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Abstract

We gather here seven definitions of a Gelfand-Shilov-Roumieu space of rapidly decreasing functions as
an inductive limit of a directed family of Banach spaces. We prove that all the inductive limit topologies
defined are the same: they do not depend on the directed family we use for the definition of the Gelfand-
Shilov-Roumieu space.
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Introduction

The Schwartz space § of rapidly decreasing functions is the space of smooth functions
@ : R" — C who have the property that

sup xﬁ('i“go(x)‘ <o, (V)a,feN".

xeR"

Relatively late, in 1993 (Schwartz published his celebrated books on distribution theory in the
fifties), J. Chung, S. Y. Chung and D. Kim ([1]) proved that a function ¢ belongs to the space §
if and only if

sup|xﬁ(p(x)| <o, (V) e N" and sup

xeR" xeR"

ﬁaqo(x)‘ <o, (V)aeN",

or, equivalently, if and only if

sup|xﬁg0(x)| <o, (V) e N" and sup

xeR" xeR"

EP(&)| <0, (NN eN".

Here ¢ denotes, as usually, the Fourier transform of the function ¢. Notice that in the last

characterization of the space of rapidly decreasing functions, the derivatives of the functions are
not explicitly involved.

If one imposes more precise conditions on the rate of decay of the function and of its derivatives
(or of its Fourier transform) one obtains the Gelfand-Shilov-Roumieu (GSR) spaces. The first
definition (chronologically and the most used) of these spaces is the following. If (44,), and
(N,), are two sequences of positive numbers who satisfy some additional conditions (the
sequences we are working with in our paper will satisfy conditions (Al) — (A4) from below),
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the GSR space S({M ,},{N ,}) is the space of those rapidly decreasing functions who have the
property that

sup

xeR"

0" p(x)| < CA"' B M N . (V). f N’

|a

for some positive constants 4, B and C ([3], [7]).
The conditions (A1) — (A4) are the following:
AY M, =1, M, 21;
(A2) M} <M, M
(A3) there exists a constant /4, =1 such that

M, <H™M,M, (V)p,q=0

pi1> (V)p 21 (logarithmic convexity);

(the condition of stability under ultradifferential operators ([6]));
(A4) there exists a constant /4, =1 such that

JpM, <H,M,, (Y)p=1.

Starting from this point we shall consider, in order to simplify the notations and the proofs, that
n = 1. Generalizations of the definitions and results from below to the case n > 1 are
straightforward.

In order to introduce a topology on S({M ,},{N,}) one defines, for some fixed constants 4
and B the norms
) a| p- - “
bells = sup supa™B 0y, N, )"0 o).
a|5|A120 xe "

If we define

SS}B({MP}’{NP}) ={pes; ¢)”(Al,)3 < oo,

then S;l’)B (M ,},{N,}) is a Banach space and
SUM LN, D= ST (M LN, ).
We can define therefore an inductive limit topology on S({M ,},{N ,}):

SUM 3 AN, }) =limind S, ({M 3, {N 1) .

4,850
The inductive limit is not strict ([7]).

In analogy with the case of the space § who admits different characterizations, there are also
different characterizations of the same GSR space. Correspondingly, we can define different
families of norms on subspaces of a GSR space and construct the topology on S({M ,},{N ,})

as the inductive limit of different families of Banach spaces. Depending on the purpose we have
in mind, it is convenient to use one or another of these characterizations. For example, the last
characterization we shall give in the next section appeared to us to be extremely useful when
doing the time frequency analysis of GSR spaces and of their duals, the spaces of
ultradistributions. So, it is important to know that the topology of the GSR space is the same.
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In our paper we shall give 7 equivalent definitions of a GSR space as a set (already known in
fact in the mathematical literature ([2], [4], [5], [7]) and we shall prove that the topologies
defined starting from these definitions are the same. Even if tacitly assumed in some of the
paper mentioned above, we could not find a clear statement on the equality of these topologies
and a complete proof of their equality. When the reference is clear we shall indicate it and we
shall omit the details.

In the second section of the paper we shall give the basic definitions and we shall formulate the
main result. The third section will contain the proofs.

Main Result

We shall denote the operator of multiplication with the variable x with the same letter, x. The L*
and L” norms for functions defined on R are denoted with || || , » respectively || ||0o

For ¢ a smooth function on R and A4, B two positive constants, we put:
@ _ -p p- -1 ()
el = supla 7B (M,N,) " x'0 ]
’ P-q=0

3) - _ _ _
ol =su N, 0]+ supla 73t
A,B 420 q © 50 P »

||go||(:jg = sup”B"’Nq’lx"go”2 + sup
q20 p=0

A”’M;‘gp“’)”2 ’

||go||(j,)3 = sup”B_“’Nq_lx"go”Oo + sup
420 >0

ATM ) E

>
0

||(p||(j)3 = sup”B“]Nq‘lxq(p”2 + sup"A"’M;lg”([)
420 >0

)
Also, for a, b > 0, we put

M _ N(b|x]) M(b|&))
o=lpe

o +|oe

0

Here M, N :(0,00) —[l,00) are the functions asociated to the sequences (1,),,, respectively
(No)p:
M(r)=sup(plnr—InM ), (V)r>0.

p=0
The spaces
; () :
SO UM AN D ={pes; ¢||A,B <o}, i=1,...6
and
(7
Sy (UM 3N, D ={pe S |g|,, <o}

are Banach spaces and the families
(Sis (M AN, D) g s 0= L6 and (S5 (I3, AN 1)) 0o

are directed families of Banach spaces (the last family is a directed one since the functions
associated to sequences of numbers are nondecreasing functions). Therefore we can define their
inductive limit.
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Our main result is the following.

Proposition 1. If sequences (M,), and (NV,), satisfy the assumptions (A1) — (A4), then
SUMLAN, D = & ST (M 3AN, D) fori=1,..6

and
SUM 3N, D = U STUM LN, ).

The corresponding inductive limits coincide.

Proofs

The starting point of the proof of Proposition 1 is the following lemma on inductive limit
topologies.

Lemma 1. Let (X;),,, (¥,),, be two directed families of normed spaces so that if
X, © X, or Y, Y, then the inclusion operator is bounded. If for every i € / there exists
some j € J such that X; is continuously embedded in Y; and for every j e J there exists some

i € I such that ¥; is continuously embedded in X;, then

limind X; =limind Y, .

iel JjEJj

Proof. Let us recall that the inductive limit topology is defined by specifying a fundamental
system of neighborhoods of the origin. The fundamental system of neighborhoods is constituted

by the convex and balanced sets such that W M X, (respectively W NY ) 1s a neighborhood of
the origin in X; for every i € I (respectively W NY f is a neighborhood of the origin in Y; for
every j € J). So it is sufficient to prove that W M X, is a neighborhood of the origin in X; for
every i €[ ifandonly if W NY . 1s a neighborhood of the origin in Y; for every j e J.

Let us assume that /' M X, is a neighborhood of the origin in X; for every i € / andlet j e J .

There exist some [ €/ such that ¥; is continuously embedded in X;. Therefore there exists a
positive constant C such that

lel., < Clel,» Mo e
Since W N X, € (0, ), there exists a positive constant € such that ¢ € W' if ||g0||X < ¢.But

if @€Y, and ||(p||y <%, then ||¢||X <¢ and, consequently, @eW . Hence
J i
WnY, eV v ).

From Lemma 1 it follows that the conclusion of Proposition 1 holds if each space of type (i) is
continuously embedded in a space of type (j) for every i, j € {l,...,7}. Since the sequences

(M,), and (N,), are fixed, we shall write simply S, instead of ', ({M »1>{N,}) . With the

letter C we shall denote constants which do not depend of the function ¢, on p or on g.
Ocasionally we shall attach indexes to constants C.
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Lemma 2. SS,)B is continuously embedded in 5&12,,23111 where H, is the constant from the

assumption (Al).

Lemma 3. S} is continuously embedded in Sﬁ,l,),l BH, -

The main ideas of the proofs of Lemmas 2 and 3 are contained in the proof of Proposition 1
from the second chapter from [7]. One uses the Schwartz’s inequality and the assumptions (A1)
- (A3).

Lemma 4. 5;1,)3 is continuously embedded in Sﬂ; and Sﬁf; is continuously embedded in S;g.

Proof. We have that

ol < 2l (9 < 80 and ol <20l (Do e st

Lemma 5. Sﬁfg is continuously embedded in S£12131 25 251, 1O A*>2H, and B>2.

Before giving the proof let us notice that since the families of Banach spaces are directed, from
Lemma 5 it follows that every space of type (4) can be continuously embedded in a space of

type (2).

Proof of Lemma 5. We shall follow [2]. We shall give the complete proof (even if it is a little
bit tedious) since the estimates from [2] contain some errors. Assume that @ € 5. Then using

successively integration by parts (the integration by parts is justified since all our functions
belong to 5), Leibniz rule of differentiation and Schwartz’s inequality, we have

APB (Mqu)fl (qugo(p) (x)| de)l/z _
= A PR (MPNq)—l(J‘ qu(D(p)(x)(;(p)(x)dx)l/2 —

AT B N ) ([ D ) ) =

=A"’B‘q(M,,Nq)*(<—1)P > (”.]{%’]ﬂj xz‘I‘fq)“P'”(x)a(x)de <
J

j<min(p,29)\ J

1/2
cawony( Z (9ol -

Jj<min(p.2g)\ J

1/2
2 M, . N, . - ;

But

MM, <M,,, Vk,l=0,

since the sequence (M,,), is logarithmic convex. Therefore
2p-j 2p-jAg2
M,, M, <CH"™'M M, M, <CH™'M,

and
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M2p2—j < CHIZp—j L )
M.

P J

Taking into account this inequality, (A4) and the restrictions imposed on 4 and B we finally
obtain

APB(M N )" (qugo(p) @) ) <

o PY29) 2 pr20-i S -
T
|: Jj<min(p,2q)\_J J 1 1 Mij Y

, : /2
MNenZr=0) -11,.2¢-J ]' <
S RCPME St SR

SC‘[A2PB2"2P22" 3 2?(1), Jzz‘f(zf]JHfPfo“H;’-

j<min(p,2q) J J

O KRR

e 5 (T,

Jj<min(p.24) J
el (2 i B . /2
-(BH, ) 1) (24 ")(NQH) 1sz" ~’ng2]] <

(4)

< C'"(DMWAHI‘I, Z—IBHl—l :

The proof is complete.

Lemma 6. Sif; is continuously embedded in Sifl)g and Sif; is continuously embedded in
Sin

This lemma is a direct consequence of Plancherel’s theorem.

3 : ; (2) 2 5 >
Lemma 7. S is continuously embedded in SAHl (7 280? for A 22H, and B>2.

Proof. Assume that @ € §. Then we have

A7B(M N )"(J|xq<o“’)(X)| 2dx)”2 =A"B(M,N)"-
14 q P q

2 . ‘ 1/2
=((—1>” 3 m( ?Jﬂj(l+x2>x2w“p-”(x)@(x) dxzj <
J 1+x

j<min(p,29)\ J

p 2q 1/2 dx 1/2
sA-PB-q(M,,Nq)‘I( 2 ('](j)”“¢”"”\LH<1”z)xzq_j(”m )

j<min(p,29)\ J

IN
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B B p 2q A M o N s _ _ i
s s ([ Yoy,
Jj<min(p,2q) ] ] Mp N‘I

1/2
o, Sz terd ||

29-j

Following the argument from the second part of the proof of Lemma 5, we obtain the
conclusion. The second index of the space of type (2) is equal with 2BH 12 since we have to

N, .
estimate —4/2 using (A3).
2q9-J

Lemma 8. Sﬁf; is continuously embedded in 5;21, BH, -

Proof. For ¢ in S we have

A—pM:(jgzzp P )”2 _ ApMpl(j(l+§2)§2p|¢(§)|2 %) <

<cAM,|a+[E)herdp ©

L <Clel
Similarly

)
5N, (ool as) " <ol 0
Lemma 9. SS’) is continuously embedded in 5 (5)

Proof. It is sufficient to estimate ”é: r (b" . We have

A7M) e

ZA_pM—1||.[e—i<x,§> (p)(x)dx” SA—pM;IJ'|¢(p)(x)|dx:
<ATM- ||(1+x )(p“”” f <Clo ”(1)

For the proof of the last two lemmas we shall again use an idea from [7].

Lemma 10. S( » 1s continuously embedded in 59 g

Proof. We put B = b~". Then, using the definition of the associated function, we obtain that

N(b|x|)

B_qN(;l ”xq(D"w < B—qu—quNq”(DeN(b\x\)

=l

0

The Fourier transform of ¢ is estimated in an analogous manner.

Lemma 11. S¥ A ), is continuously embedded in S;’_l I (¥)o €(0,1).

Proof. Weput a = A™', b= B~'. From the definition of the associated function it follows that

Neh) o (b|x|)q .
e ;)—N

q
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Therefore
b q
|x|j 59
Nelh | < (b|x|)q _ (5 <l 59 = 1 )
pe] < 0T w O I DD L

Similarly, one has

0

. 1
5 <L sholih,

The conclusion of Proposition 1 is derived from the lemmas 2-11.
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Asupra topologiei spatiilor Gelfand-Shilov-Roumieu

Rezumat

Reunim aici sapte definitii ale unui spatiu Gelfand-Shilov-Roumieu de functii rapid descrescdtoare ca
limita inductiva a unei familii dirijate de spatii Banach. Demonstram ca topologiile limitd inductiva astfel
definite sint aceleasi: ele nu depind de familia dirijata pe care o folosim pentru definirea spatiului
Gelfand-Shilov-Roumieu.



